2020/02/14 10:18 1/6 TUTORIAL 1.1 - Introduction

TUTORIAL 1.1 - Introduction

This first tutorial is a MUST TO READ. It deals with specific file and directory requirements for using
the engine (HPL). Read it to save headache before starting to create models, maps and so forth.

When dealing with files and folders for the HPL directory there are a couple of important factors to
know about. HPL does not care about directories! This means that if you place two files with the same
name and extension at different locations, HPL will not be able to tell the difference and simply use
the first one it finds.

Because of this it is very important to always give files unique names!

It seems odd? It's a choice made to allow moving files around and easing the locations of files when
writing scripts and specific game files. This means that if you want to play a sound in the game you
simply refer to the file name instead of having to refer to the exact path to the file.

HPL does not search all the directories on it's own, you have to tell HPL what directories there are for
it to search. This is done with HPL Helper that edits the file "resources.cfg”. To create a tutorial for
this, lets use HPL helper to edit the “resources.cfg” file.

First go to the "redist” directory and create a new folder called "mystuff”. Launch HPL Helper and you
should automatically be at the settings tab, this is the part of HPL Helper we want to use. Click "Add”
and locate your newly created directory and add it to the list. If done correctly you should now have a
/mystuff at the bottom of the list.

Lets continue and add some more directories, first move the tutorial directory into the redist folder as
well. We want to do this because it contains files we want to use for our tutorials. Using HPL Helper
add the following directories:

tutorials tutorials/tutorial 1 tutorials/tutorial_2 tutorials/tutorial_3 tutorials/tutorial_4
tutorials/tutorial_5

Your resource directory list in HPL helper should now list these additional directories. When all is done
press the “Save to File” button to save the settings. To see if you have done it right lets try and open
a test model. Go to the "Models” tab in HPL Helper and select browse. Navigate to tutorial_1 and
select the "tut_woodbox.dae” and test the view button. If all works correctly you should get a nice
wooden box in the viewer and if you left click it you should be able to bounce it around.

That concludes the directory tutorial

TUTORIAL 1.2 - CREATING YOUR FIRST MODEL

Using HPL to create games requires about as much knowledge and time as using any other advanced
game engine to create new content/mods. What differs HPL from the rest is that it does not use a
specific map editor; rather it uses regular 3D editors. The only requirement is that the 3D editor
supports the COLLADA format, http://collada.org. Following will be a kick-start on how to create a very
basic model and to get it working in the game. Following that will be creating a level consisting of one
room and making that room contain the model created. This tutorial will use pre-made textures;
details for textures will come later.

Frictional Game Wiki - https://wiki.frictionalgames.com/


http://collada.org

Last update: 2020/02/07

08:41 hpl1:tutorials:tutorial_1_-_introduction https://wiki.frictionalgames.com/hpl1/tutorials/tutorial_1_-_introduction

To get started, search and locate a module/extension/library for your editor that gives it support for
COLLADA. Install it properly and start your editor, make sure you are able to export and import
collada files. It's important that you check the "export polygons as triangles” option for exporting in
collada.

First thing to do in your 3D editor is to make sure the units are set to equal 1 meter. The HPL-Engine
uses the Sl standard for all units.

Create a basic cube, with the dimensions 1Im*1m*1m and leave it in the center of the project. This
cube will need a texture, to keep it simple we have a texture ready for you to use

It's located in "tutorials/tutorial_1/tut_ woodbox.jpg”

Attach the texture to the cube, do not rename or move the texture. You should now have a pretty
cube with a wooden surface. Save the project to a location of your choice, this work file can be stored
anywhere you want.

Let's test the model and see if it works in the game. Export it as a collada file and save the file in your
"mystuff” directory, name it "mystuff woodbox.dae”. Now using HPL Helper open the file using the
"Models” tab.

If all is working OK you should have a wooden box in your view now. If you try and click it and move it
around it does not work! If you recall from the previous tutorial it worked on that wooden box, it does
not work with this one because the model we have created does not have a collider. This is something
that we will need to add.

Going back to you 3D editor, make a copy of your wood box cube. Do not move it, leave it exactly in
the same position as the original cube. Now rename the new node to ”_collider_box_1". What this
does is that you create a string for the game with ”_collider” and then you specify what type of
collider it is with the "box” and finally you name it "1”. The starting “_" act as hint for the engine so
that it knows that this geometry is special, the other “_" are separators between the different
properties.

Different types of colliders are available, box, sphere, cylinder and so forth. For the exact list view the
HPL-Engine© Content Creation. More complex model can have multiple different colliders, you can
make as many as you want to get the collision detection as detailed as possible, but the idea is to
make it as simple as possible.

In your project you should now have 1 node that is the original box and 1 node that is the new
_collider. Export the model again and open it using HPL Helper. If done correctly you should now have
a box that can be moved around.

Not going into detail here, but it's good to always create a group for your mesh and the colliders.
Later you might create models that have different parts. Say you create a door, where you want the
frame to be a static object but the door an object that the player can open and close. For this to work
you need to make the frame and doors separate objects in your 3D editor and group them with their
respective colliders.

https://wiki.frictionalgames.com/ Printed on 2020/02/14 10:18


https://wiki.frictionalgames.com/hpl1/documentation/content_creation_document

2020/02/14 10:18 3/6 TUTORIAL 1.1 - Introduction

TUTORIAL 1.3 - ENTITY FILES

When you have a model finished you might want to add specific properties to it. Such as what type of
material is the object, how much it weighs, how you interact with it and does it collide with the
player? To do this you'll need to create an entity file, this is basically a regular text file containing all
the information, an XML file to be specific.

To start off lets take a look at an existing entity file. Using a regular text editor (preferably wordpad or
better, not notepad and never word or any other office like suite.) open the "tut_woodbox.ent” file
located in tutorials/tutorial 1.

This is a quite simple entity file, let’'s take a look at what it contains.

<MAIN
Name="tut woodbox"
Type="0bject"
Subtype="Normal"
/>

These are quite unimportant. For simplicity always put the name of the file in Name="". Type and
Subtype are not often changed. Type is "Object” for most models, if you make a model that is going
to be picked up, say the dynamite in Penumbra, you change it to Type="Item”. Subtype is so far not
used at all except as Normal. For details on different Types view the 6 Entity files document.

<PHYSICS
SubName = "pCubeShapel"
Collides = "true"
HasPhysics = "true"
Material="Dyn Wood Box"
Mass="30"

InertiaScale = "1 1 1"

AngularDamping = "0.1"

LinearDamping = "0.1"

BlocksSound = "false"
/>

Most of these are self-explanatory. The SubName is important, is should always be the name of the
mesh. It's of extra importance when you have a model with different parts, otherwise the engine wont
be able to tell, for example, what part of a door that is static and not.

Material="" says what material the object it, this is used to give it friction, sounds and such material
specific things. A list of materials can be found in HPL Helper under the "Materials” tab, by the drop
down menu "physics material”.

Angular and Linear Damping, lets play with them a little. Using HPL Helper, under the "Models” tab
open the "tut_woodbox.ent” file. This will open the tut_ woodbox.dae file BUT also give it the specific
properties from the ent file. Now spin the box around a little, throw it around and notice how it
behaves. Go back to the text editor and edit the entity file to have AngularDamping = “1” and
LinearDamping = “1” and save the file. Go back to HPL Helper and open the the file again, now if you
bounce and spin the box around you should notice that it wants to spin and move less/slower. This is

Frictional Game Wiki - https://wiki.frictionalgames.com/


https://wiki.frictionalgames.com/hpl1/documentation/content.creation.document.chap6

Last update: 2020/02/07

08:41 hpl1:tutorials:tutorial_1_-_introduction https://wiki.frictionalgames.com/hpl1/tutorials/tutorial_1_-_introduction

because we raised the damping factor. As always more exact details on everything can be found in
the HPL-Engine© Content Creation.

<GRAPHICS
ModelFile = "tut woodbox"
CastShadows = "true"

/>

ModelFile ="" this is the name of the model (.dae) file the entity file is setting properties for. This
means that you can create one model and then you can create several different entity files, each with
different properties but they all use the same model.

<GAME
InteractMode = "Push"
/>

Here you set different behaviours for the model. Push means that if you have the wood box in the
game, you will only be able to push it around. If you change to "grab” you will be able to pick it up
and carry it around. If it's a door you use "move” and that will give that function of being able to
nicely move objects in a realistic manner with your mouse. These are typical doors, drawers, valves,
sticks and so forth. This are can also contain several other settings, as always HPL-Engine© Content
Creation and 6 Entity files are the places to search for more details.

The easiest way to get started with entity files it to always make a copy of an existing entity file and
use that as a base for your new objects. Select an entity file for an object similar to the one you have
created. In a long term perspective it is important to eventually understand what everything is in the
entity file though.

So lets create an entity file for our "mystuff woodbox.dae” file. Start by copying the
"tut_woodbox.ent” file to your mystuff directory. Name it "mystuff woodbox.ent” and open it in a text
editor.

<MAIN
Name="tut woodbox"
Type="0bject"
Subtype="Normal"
/>

Change Name to mystuff woodbox.

<PHYSICS
SubName = "pCubeShapel"
Collides = "true"
HasPhysics = "true"
Material="Dyn Wood Box"
Mass="30"

InertiaScale = "1 1 1"
AngularDamping = "0.1"
LinearDamping = "0.1"
BlocksSound = "false"

https://wiki.frictionalgames.com/ Printed on 2020/02/14 10:18


https://wiki.frictionalgames.com/hpl1/documentation/content_creation_document
https://wiki.frictionalgames.com/hpl1/documentation/content_creation_document
https://wiki.frictionalgames.com/hpl1/documentation/content_creation_document
https://wiki.frictionalgames.com/hpl1/documentation/content.creation.document.chap6

2020/02/14 10:18 5/6 TUTORIAL 1.1 - Introduction

/>

Make sure SubName is the name of your mesh in your 3D editor. To test having a different material,
replace "Dyn_Wood_Box” with "Metal”.

<GRAPHICS
ModelFile = "tut woodbox"
CastShadows = "true"

/>

Change ModelFile to "mystuff woodbox”. If you wish set CastShadows to false if you do not want the
model to cast a shadow.

<GAME
InteractMode = "Push"
/>

Set this to "Grab” instead of "Push”.

Now save the file and open it in HPL Helper. If everything works OK, you should see your wood box
just as before. The only difference is that it should fall down to the ground by itself, if you open a .dae
file directly it stays in the air until you interact with it.

Take not that in HPL Helper the InteractMode for Push and Grab makes no difference, this is only
working when you have the object in the game. Which leads us to, of course, how to get the model
into the game! For this to happen there are 1 more thing we need to do and that is the next chapter.

TUTORIAL 1.4 - REFERENCES

References are files that you create and import into your levels to tell the engine what entity it should
load, where it should be loaded and what it should be named.

To create a reference open your "mystuff woodbox” project. This should be your work project and not
the .dae file, but it really does not matter which.

Delete everything in the project EXCEPT the original mesh, the actual wood box. Rename the node to
" ref_mystuff woodbox_woodbox1”. As you might have guessed this is quite similar to how you
created a collider earlier, ”_ref” this is the string telling the engine that it's a reference,

"mystuff woodbox” is telling the game where to find the file and finally "woodbox1” is what the object
will be name in the game. The name is used when you for example write scripts.

Do not save the project, only export a new collada file. You can name it “ref mystuff woodbox.dae”.
Now you have a reference file, but to see it in the game we need to create a level. But before moving
on to Tutorial 2, where we create a level, we shall have a serious talk about exactly how reference
files works.

The actual reference file is not important AT ALL. It's the ”_ref mystuff woodbox_woodbox1” that's
important to get in the game. Where you store the reference file is of no importance, the reference
file is only used by you to place objects correctly in the game. As far as the game is concerned you
can use any object you want as long as you name it correctly.

Frictional Game Wiki - https://wiki.frictionalgames.com/



Last update: 2020/02/07

08:41 hpl1:tutorials:tutorial_1_-_introduction https://wiki.frictionalgames.com/hpl1/tutorials/tutorial_1_-_introduction

If you want to put a character in the game you do not need to have an actual character model as your
reference, it works just as well with a cube as long as it is named " _ref characterfile_charactername”.
But for you to know exactly where you place it in a level it's logical to use the exact character model
as your reference, as well as being able to know what the reference is simply by looking at it.
Therefore always create a reference that is an exact copy of the file you are referencing to.

The other important thing to know about references are: They point the game to the ENTITY file and
not the MODEL file. When the game loads a level it finds all the ref named objects and it then loads
the entity files that the references points to. When loading the entity file it gets all the specific
properties for the model and, as you might recall, the entity file contains the name of the model it
sets it's properties for. Leading to the model being loaded into the game with the specific properties.

Now, lets create that level of ours so we can finally test a model in the game.

From:
https://wiki.frictionalgames.com/ - Frictional Game Wiki

Permanent link:
https://wiki.frictionalgames.com/hpll/tutorials/tutorial_1_-_introduction

Last update: 2020/02/07 08:41

https://wiki.frictionalgames.com/ Printed on 2020/02/14 10:18


https://wiki.frictionalgames.com/
https://wiki.frictionalgames.com/hpl1/tutorials/tutorial_1_-_introduction

	TUTORIAL 1.1 – Introduction
	TUTORIAL 1.2 – CREATING YOUR FIRST MODEL
	TUTORIAL 1.3 – ENTITY FILES
	TUTORIAL 1.4 – REFERENCES


