
2016/03/09 16:45 1/7 Funcdef & Function Pointers

Frictional Game Wiki - https://wiki.frictionalgames.com/

Funcdef & Function Pointers

This tutorial explains how to set up and use funcdefs & function pointers in level scripts. The first two
parts of this tutorial cover some very basic examples on use, with the last mixing arrays and function
pointers to allow both calling sequences and a function at random.

Introduction to the "funcdef" statement

The Angelscript documentation states that “A function pointer is a data type that can be dynamically
set to point to a global function that has a matching function signature as that defined by the variable
declaration.” In other words, you're making a type - something like int or string - but instead of this
type's variables containing text or numbers, it contains functions - or more specifically, pointers to
functions .
To understand better what a function pointer is: Consider a box, and this box contains a note telling
you to look in another box somewhere else - this is your function pointer, it just contains information
on where to look. The other box, the one referenced, contains the actual functional information. We
can use these “extra boxes” to create variables that can be called just like functions.

The first stage in the process, is to make the type which will used to create variables later. This type
is dependant on what the signature of your function is (that is, what arguments are taken in by the
function, and what is returned by the function) - Below are some example funcdef statements:

funcdef void fdSimpleFunction(); // Used for pointers to functions which
take no arguments and return no vales
funcdef int fdReturningFunction(); // Used for pointers to functions which
return an int and take no arguments.
funcdef int fdComplexFunction(int, int); // Used for pointers to functions
which of return type int and take two ints as arguments

Taking the top statement, here is a sample function which could later be pointed to:

void sfHelloWorld() {
 AddDebugMessage("Hello World!", false); // Outputs: Hello World!
}

With a function pointer type defined, and a function to point to - the next step is to make the function
pointer:

fdSimpleFunction@ functionVar;

This is similar to just normal variable creation, except the “@” sign - The “@” symbol in angelscript
literally means “Handle of” / “Address of”, and is just stating that our variable is a pointer. However it
currently point anywhere - it literally “is null”. To make it point to a function, we use an assignment
statement just like a normal variable, except the “@” symbol appears again:

// We know this line declares our functionVar
fdSimpleFunction@ functionVar;

http://www.angelcode.com/angelscript/sdk/docs/manual/doc_datatypes_funcptr.html

Last update: 2011/08/15 02:09 hpl2:tutorials:script:funcdef https://wiki.frictionalgames.com/hpl2/tutorials/script/funcdef

https://wiki.frictionalgames.com/ Printed on 2016/03/09 16:45

// We now will make this point to sfHelloWorld()!
@functionVar = @sfHelloWorld;

This new line is making functionVar point to the address of sfHelloWorld (in other words, we just put a
note in our box saying look into the specific other box for sfHelloWorld). You are actually saying “set
the handle of function var to the handle of sfHelloWorld” - this is why functionVar can be
called just like the function, even though it is actually a variable:

// If all has gone well:
functionVar();

// Does exactly the same as:
sfHelloWorld();

Below is a sample map script file using the code covered in this section, make sure to be in developer
mode to see the output.

// Make the type "fdSimpleFunction"
funcdef void fdSimpleFunction();

// Output hello world
void sfHelloWorld() {
 AddDebugMessage("Hello World!", false);
}

void OnStart() {
 // Call the function normally!
 AddDebugMessage("Calling the function normally!", false);
 sfHelloWorld();

 // Call the function using our variable!
 AddDebugMessage("Calling the function using the pointer!", false);
 fdSimpleFunction@ functionVar;
 @functionVar = @sfHelloWorld;
 functionVar();
}

So far, all we have managed to achieve is something we could have done already! Why go through all
this hassle, to just call a function we could have called anyway? The next section shows how the
variable aspect of the function can be exploited to solve a basic problem.

Solving a basic problem with function pointers

This following example can easily be solved without function pointers - however it compactly
demonstrates that function pointers can point to any function with a matching signature, and gives a
glimpse of what can be achieved using this. If a function pointer can change where it points to - we
can effectively make one function call actually call different things to suit what we want. Take for
example, the following two functions:

2016/03/09 16:45 3/7 Funcdef & Function Pointers

Frictional Game Wiki - https://wiki.frictionalgames.com/

void bigFunction() {
 subFunction();
}
void subFunction() {
 //Implementing later...
}

The specification is as follows: At the end of bigFunction we want to call a function called output1.
However, subFunction should have a random (1/4) chance of making bigFunction call output2 instead.
Both the output functions are defined below:

void output1() {
 AddDebugMessage("Yo!", false);
}
void output2() {
 AddDebugMessage("Dawg!", false);
}

This problem can be solved using a function pointer. First again, the type which matches are output
functions is defined:

// Create a function definition (which is actually the same as
fdSimpleFunction)
// Which will matches the signature of both our output functions
funcdef void fdOutput();

With the second step creating the variable which shall initially point to output1 at the start of
bigFunction. Next we call subFunction as before, which will change the function pointer. Finally, we
will call the function pointed to by the pointer:

fdOutput @outputChoice;
void bigFunction() {
 @outputChoice = @output1;
 subFunction();
 outputChoice();
}

The subFunction implementation is as follows:

void subFunction() {
 if(RandInt(, 3) == 1)
 {
 @outputChoice = @output2; // A 1 in 4 chance of this code being
reached
 }
}

Problem solved. You can test out the full code as with the previous section below:

// Create a function definition (which is actually the same as

Last update: 2011/08/15 02:09 hpl2:tutorials:script:funcdef https://wiki.frictionalgames.com/hpl2/tutorials/script/funcdef

https://wiki.frictionalgames.com/ Printed on 2016/03/09 16:45

fdSimpleFunction)
// Which will matches the signature of both our output functions
funcdef void fdOutput();

// Our output functions
void output1() {
 AddDebugMessage("Yo!", false);
}
void output2() {
 AddDebugMessage("Dawg!", false);
}

// The actual stuff that does the descision making
fdOutput @outputChoice;
void bigFunction() {
 @outputChoice = @output1; // Initially point to output 1
 subFunction(); // Call with 1/4 chance of changing outputChoice
 outputChoice(); // Call whichever output has been chosen
}

void subFunction() {
 if(RandInt(, 3) == 1)
 {
 @outputChoice = @output2; // A 1 in 4 chance of changing the
function pointer
 }
}

void OnStart() {
 // Call bigFunction 20 times - notice roughly a 1/4 chance of output2?
 for(int i=; i<20; i++) bigFunction();
}

It's time to move onto solving a much bigger problem: Calling a random function.

Arrays, function pointers, and you

We shall extend the above problem to have an arbitrary number of functions, and still manage calling
one at random. To make things easier though, we will have each function called with an equal
probablility. Obviously we could do a massive set of ifs, or a huge switch-case block (what if there are
100 choices? who would want to write that out that switch-case?). We shall re-use most of the code
from the first section to get started, however, this time there are two new signature matching
functions, giving us the following script file so far:

// This creates a signature called "SimpleFunction"
// Which matches functions which take no arguments, and return nothing...
funcdef void fdSimpleFunction();
// ...such as the following sample functions:
// This function will output "hello world"
void sfHelloWorld() {

2016/03/09 16:45 5/7 Funcdef & Function Pointers

Frictional Game Wiki - https://wiki.frictionalgames.com/

 AddDebugMessage("Hello World!", false);
}
// This function will output how many times it has been called
void sfDisplayTimesCalled() {
 AddLocalVarInt("DTC_TimesCalled", 1);
 AddDebugMessage("DisplayTimesCalled, called: " +
GetLocalVarInt("DTC_TimesCalled") + " times", false);
}
//This function will play the sound of an angry brute!
void sfPlayScarySound() {
 PlayGuiSound("enemy\\brute\\notice.snt", 1.0f);
}

The problem of calling one of the functions at random is going to be solved by making an array. Each
index is going to contain one of the above functions, we just then pick a random index, and call the
function at that index. This solution scales really nicely when there is are a good number of functions
to call.

An array of function pointers is declared in the following code segment - note that the {} part is not
required, but merely used for the sake of compact-ness, all this section does is initialise the array with
some values in it already. If you are not familiar with arrays, take a scan through the Angelscript
documentation.

fdSimpleFunction@[] simpleFunctions = { @sfHelloWorld,
@sfDisplayTimesCalled, @sfPlayScarySound };

Now all is left to do is create a function that picks an index at random, and calls the function at that
index:

void callRandomSimpleFunction() {
 uint index = RandInt(, simpleFunctions.length()-1); // Pick a
random index from the array
 fdSimpleFunction @functionToCall = simpleFunctions[index]; // Select
that function
 functionToCall(); // Call
that function

 // Note this can be simplified down to one line:
 // simpleFunctions[RandInt(0, simpleFunctions.length()-1)]();
}

We are also in a prime position to solve the problem of sequences here too, the following code will
call each function in order in the array:

void callEachFunction(string &in asTimerName) {
 uint index = GetLocalVarInt("simpleFunctionIndex"); // Get the index
 if(index>= simpleFunctions.length()) return; // Don't go any
further if we have called all the functions

 // Access, and call like before:
 fdSimpleFunction @functionToCall = simpleFunctions[index];

http://www.angelcode.com/angelscript/sdk/docs/manual/doc_script.html
http://www.angelcode.com/angelscript/sdk/docs/manual/doc_script.html

Last update: 2011/08/15 02:09 hpl2:tutorials:script:funcdef https://wiki.frictionalgames.com/hpl2/tutorials/script/funcdef

https://wiki.frictionalgames.com/ Printed on 2016/03/09 16:45

 functionToCall();

 AddLocalVarInt("simpleFunctionIndex", 1); // Increment the index,
so the next function is called shortly...
 AddTimer(asTimerName, 1.0f, "callEachFunction"); // Call this function
again in 1 second, so the next function is called
}

One potential extension for use with sequences is making each function return a float, which can then
be used as the delay time before calling the next function. The sample script file for this section is
below, don't forget to visit the OnStart routine and uncomment one of the two lines - or you won't see
anything, and additional function is added to loop the callRandomSimpleFunction with a timer so it's
effects can be seen easier:

// This creates a signature called "SimpleFunction"
// Which matches functions which take no arguments, and return nothing.
funcdef void fdSimpleFunction();
 // Such as these sample functions:
void sfHelloWorld() {
 AddDebugMessage("Hello World!", false); // Output hello world
}
void sfDisplayTimesCalled() {
 AddLocalVarInt("DTC_TimesCalled", 1); //Display how many times function
was called:
 AddDebugMessage("DisplayTimesCalled, called: " +
GetLocalVarInt("DTC_TimesCalled") + " times", false);
}
void sfPlayScarySound() {
 PlayGuiSound("enemy\\brute\\notice.snt", 1.0f); // Play the sound of
an angry brute!
}

// We now can create an array of these simple functions for further use.
fdSimpleFunction@[] simpleFunctions = { @sfHelloWorld,
@sfDisplayTimesCalled, @sfPlayScarySound };

// Some example uses of this:
// Calling a random function
void callRandomSimpleFunction() {
 uint index = RandInt(, simpleFunctions.length()-1); // Pick a
random index from the array
 fdSimpleFunction @functionToCall = simpleFunctions[index]; // Select
that function
 functionToCall(); // Call
that function

 // Note this can be simplified down to one line:
 // simpleFunctions[RandInt(0, simpleFunctions.length()-1)]();
}
// Using a timer to call one function per second in sequence.
void callEachFunction(string &in asTimerName) {

2016/03/09 16:45 7/7 Funcdef & Function Pointers

Frictional Game Wiki - https://wiki.frictionalgames.com/

 uint index = GetLocalVarInt("simpleFunctionIndex"); // Get the index
 if(index>= simpleFunctions.length()) return; // Don't go any
further if we have called all the functions

 // Access, and call like before:
 fdSimpleFunction @functionToCall = simpleFunctions[index];
 functionToCall();

 AddLocalVarInt("simpleFunctionIndex", 1); // Increment the index
 AddTimer(asTimerName, 1.0f, "callEachFunction"); // Call this function
again in 1 second
}
// Using a timer to repeatedly call a random function
void callRandTimer(string &in asTimerName) {
 callRandomSimpleFunction();
 AddTimer(asTimerName, 1.0f, "callRandTimer");
}
void OnStart() {
 // Uncomment one of the following to test it out!
 //callEachFunction("testTimer1");
 //callRandTimer("testTimer2");
}

Closing comments

A quick note on an earlier point - when the function pointer is defined initially, it points nowhere (as it
does if an assignment fails due to mismatching signatures). This can be tested for with the following
code:

if(functionPointer is null)

Finally, that state of a function pointer is not saved when the map is - there is no way to save the
state of a function pointer - so keep them the same (which is fine in the case of an array - like the last
example), or assume they haven't changed within the scope of the first function (E.g. the second
example).

You should now understand a little about funcdefs. Have a play around, you can use this
to make sequences, callbacks, and all sorts of fun stuff.

Check out the documentation at: www.angelcode.com/angelscript/sdk/docs/manual/doc_script.html

From:
https://wiki.frictionalgames.com/ - Frictional Game Wiki

Permanent link:
https://wiki.frictionalgames.com/hpl2/tutorials/script/funcdef

Last update: 2011/08/15 02:09

http://www.angelcode.com/angelscript/sdk/docs/manual/doc_script.html
https://wiki.frictionalgames.com/
https://wiki.frictionalgames.com/hpl2/tutorials/script/funcdef

	Funcdef & Function Pointers
	Introduction to the "funcdef" statement
	Solving a basic problem with function pointers
	Arrays, function pointers, and you
	Closing comments

