
2019/01/12 19:24 1/10 Rendering

Frictional Game Wiki - https://wiki.frictionalgames.com/

Rendering

Environment Particles

Overview

Environment particles is a way of adding a uniform volume of particles that cover an entire world in
the engine. It is useful for things like rain, snow and water particles. They way it works is the engine
keeps track of a single volume that is then tiled across the entire map. Think of this volume just like a
texture that tiles across a large 2D plane. When each particle is reaches the edge of the tiled volume,
it wraps a around, thus forming a seamless pattern of particles across the world. When rendered the
engine only renders a volume-sized (in our texture analogy, the size a single texture takes up on the
plane) at a certain distance from the player.

This volume is a chunk of the entire tiled volume so as the camera moves around in the environment.
This chunk can then be rendered several times, each time with a randomized offset to positions and
rotations, in order to create a dense collection of particles. All this is done on the GPU and is really
fast. There is no problem with having the basic volume filled with 1000 particles, and then have 10
iterations, giving a total of 10k particles. The main bottle neck is probably overdraw, so the feature is
best suited for smaller particles that do not cover much of the screen (and seldom cover each other).

Settings

ParticleNum
The number of particles in side the volume.

BoxSize
The sized of the tiled volume containing the particles.



Last update: 2011/10/20 15:18 hpl3:engine:rendering https://wiki.frictionalgames.com/hpl3/engine/rendering?rev=1319120298

https://wiki.frictionalgames.com/ Printed on 2019/01/12 19:24

SubDivUV
The number of sub textures inside the texture for the particles. 2×2 means a that 4 sub textures are
randomized between all particles.

ParticleSize
The size of the particles. Remember not to make them too large if many are required.

AffectedByLight
If the particles should be affected by light in the scene. The way this works is that 3 light probes (one
close to the camera, 2 further away) gather light-amount from lights that intersect with them. These
three values are then interpolated between for each light. It is not perfect, but does a decent job.

BoxDistance
The distance from the player at which the volume is rendered.

FadeInStart, FadeInEnd, FadeOutStart, FadeOutEnd
Parameters for how the particles in the rendered volume fade in out. All distant are measured as z-
distance from camera.

IterationNum
The number of particles that If it has a fraction (eg 13.45), the fractional part (eg 0.45) determines the
alpha of the last iteration. (to allows fading iterations)

Color
The color the particles are modulated by.

GravityVelocity, WindVelocity
Two different velocity values for each of the particles.

RotateVelocity
The speed at which the particles rotate around the center of the volume.

GravitySpeedRandomAmount, WindSpeedRandomAmount,
WindDirectionRandomAmount,RotateSpeedRandomAmount
The random variations are added to any iterations after the first! Valid values for all amounts are 0 - 1
(can be others, but not recommended).
What it does it that any subsequent iterations will have the vector updated like: vector +
vector*random amount. So if the vector is (0,1,0.1) and if the random amount is 0.1, then any
subsequent iterations will have values between (0, 0.9, 0.09) - (0, 1.1, 0.11). Wind direction random is
a bit different, what is does is that it rotates the vector (around all axes) by around amount. Wind
random amount of 1 means, it can rotate into any direction of a sphere, 0.5 means half a sphere,
0.25, quarter of a sphere and so on.
Also note that the random values are psuedo-random, this means that they do not change depending
on play through, but they are always they same. So if it looks like something in the editor, the random
distribution will look exactly the same when you view it later in the game.

RotateSpeedRandomBothDirs
If the rotations can go the opposite direction too.

Lens Flares



2019/01/12 19:24 3/10 Rendering

Frictional Game Wiki - https://wiki.frictionalgames.com/

Overview

Lens flares are a bright spot that appear at the center of a strong light source.
Lens flares are created by light entering through a camera objective and reflecting multiple times off
the surface of the numerous lenses inside it, creating several recognizable artifacts.

Video

Flare Types

Each lens flare consists of a few different kind of flare types that can be active at the same time.

Flare
A normal flare that rotates slightly depending on its position on the screen.

Anamorphic flare
A flare that stretches in either horizontal or vertical direction. The anamorphic flare stretches out
more the closer it gets to the edge of the screen.
Multi Iris
A line of small iris shaped artifacts stretching toward and away from center of the screen. The
brightness/size/sub-texture of each individual iris is randomly determined by the seed of the flare.

Flare Type Settings

Material
The material of the flare type. Additive blend and depth test disabled are recommended for best

https://player.vimeo.com/video/12744935
https://player.vimeo.com/video/12744935
https://wiki.frictionalgames.com/_detail/hpl3/engine/lens_flares.png?id=hpl3%3Aengine%3Arendering


Last update: 2011/10/20 15:18 hpl3:engine:rendering https://wiki.frictionalgames.com/hpl3/engine/rendering?rev=1319120298

https://wiki.frictionalgames.com/ Printed on 2019/01/12 19:24

result.
Color
Size
The size of the flare type. A value of 1.0 means that it covers the whole screen.

General Settings

Outer Field of View
The angle in degrees of which the flare should be visible. The brightness fades from 0-100% between
Outer and Inner Field of View.
Inner Field of View
The angle in degrees of which the flare should have full brightness.
Min Range
The minimum range for when the lens flare is visible. A value of -1 means that the camera can never
be to close.
Max Range
The maximum range for when the lens flare is visible. A value of -1 means that the lens flare has an
unlimited range.
Size change based on distance
A real value between 0-1 that determines how much the screen size of the lens flare should change
the further away it gets. A value of 0 means that the flare always has same size on the screen.

Glare Settings

Lens flares can be used to blind the camera. Either if the camera is looking directly at the lens flare or
if the lens flare is pointed toward the camera.

Glare Brightness
How much the camera will be blinded.
Glare Stare At
How blinded the camera will be by looking directly at the lens flare.
Glare Field of View
The angle in degrees of which the lens flare should blind the camera. The camera will be more blinded
the more the lens flare pointed at the camera.
Glare Range
How close the lens flare has to be to blind the camera. The glare brightness fades out between the
minimum and maximum value. A value of -1 means unlimited range.

Multi Iris Settings

Mul MultiIris with Glare
Toggles whether the strength of the Multi Iris line should be affected by the glare amount.
MultiIris Count
The number of irises in the Multi Iris line.
MultiIris texture atlas grid
The material for the Multi Iris line can be a texture atlas with many small sub-textures on it. The
texture grid selects how many sub-textures there are and how they are divided on the texture atlas. A



2019/01/12 19:24 5/10 Rendering

Frictional Game Wiki - https://wiki.frictionalgames.com/

texture with the size 128×128 and a sub-texture size of 64×64 would have a value of (2,2).

Occlusion Settings

Shrink when Occluded
Toggles whether the lens flare should shrink or fade out when it gets occluded.
Source Size
3D Vector storing the size of the occluder for the lens flare. Will be displayed as a green wireframe
box.
Use parent mesh for occlusion
Uses the mesh of the parent instead of the Source Size box as an occluder.

Gamma Correction

Overview

There are two types of gamma correction. The first one makes sure that the image is displayed
correctly on a computer screen. The luminance of a computer monitor is not linear, to compensate
this gamma correction is applied to each pixel. This is done by adjusting the curve of the image to
make all the pixels brighter, the shadows get affected the most and the highlights the least. When the
image gets displayed on the monitor the inverse curve is applied and all the pixels are displayed at
their original luminance. This is something that is done automatically by digital cameras and
applications like Photoshop.

The second type of gamma correction makes sure that all light calculations are perform in linear-
space. Since textures created in Photoshop are saved in gamma space they need to be converted to
linear-space before lighting is applied to them. This is done by applying the inverse curve that the
monitor uses and then multiplying it with the color and brightness of the light source.

Links

What is Gamma? Linear-Space Lighting Gamma Correction and Gamma Correction

HDR Rendering

https://wiki.frictionalgames.com/_detail/hpl3/engine/multi_iris.png?id=hpl3%3Aengine%3Arendering
https://wiki.frictionalgames.com/_detail/hpl3/engine/gammalines-small.png?id=hpl3%3Aengine%3Arendering
http://filmicgames.com/archives/32
http://filmicgames.com/archives/299
http://filmicgames.com/archives/581


Last update: 2011/10/20 15:18 hpl3:engine:rendering https://wiki.frictionalgames.com/hpl3/engine/rendering?rev=1319120298

https://wiki.frictionalgames.com/ Printed on 2019/01/12 19:24

Overview

A normal computer monitor can display display colors in the range of (0-255) per color channel. This
adds up to around 16.77 million unique colors.
With HDR Rendering the number of colors per channel is increased to 65565. This is increases the
precision and quality of dark/grey tones and it also gives the ability to have colors that are brighter
than the monitor can display.
Having colors that are brighter then what the monitor can display would be a waste. A technique
called Tone Mapping is applied to the high precision color to covert it to a range between (0-255) so
that the monitor can display it.

All light have a brightness setting so that they can be brighter then 1. The overall range of the
brightness of a level should be around (0-10) for best result. Before HDR was implemented it was a in
the range of (0-1)

Tone Mapping

Tone Mapping is a technique to convert colors from high precsion to colors visible on the monitor. The
algorithm starts by scaling the luminance of the image by the exposure of the camera, making the
whole image darker or brighter. It then uses a function to map data in the domain of (0-Unlimited) to
values between (0-1). The function used in the engine is called called Uncharted Tone Mapping, from
the game Uncharted 2. It increases the contrast of the image by making the dark colors darker and
smoothing out the highlights. After that all colors are scaled by a white point, clamping all colors
above the white point to 1.

Variables

MiddleGrey | A real value that sets what should be considered the middle grey value.
Exposure | The total light that is allowed through the camera, increasing this value makes the image
brighter. In the range of -10 to +10.
WhitePoint | A real value that sets which value that should be considered the brightest.

Exposure Area

Overview

A area that changes the tone mapping parameters when entered. Used to simulate automatic
correction of exposure that occurs when eyes get used to bright/dim lit environments.

Variables

Position | The world position of the trigger area.
Size | The size of the area that triggers the change.
Exposure | The total light that is allowed through the camera, increasing this value makes the image



2019/01/12 19:24 7/10 Rendering

Frictional Game Wiki - https://wiki.frictionalgames.com/

brighter. In the range of -10 to +10.
WhitePoint | A real value that sets which value that should be considered the brightest.
TransitionTime | The time it takes for the new exposure to apply.

Color Grading

Overview

Color grading is a way to map the color of a pixel to another color. This can be used to change the
brightness, contrast, hue, saturation, … of a whole image.
It is possible to smoothly fade between two different grading templates.
It uses a small 3D texture with a color as input and another color as output.

Creation Guide

Requirements

Photoshop
NVIDIA Texture Tooels for Adobe Photoshop

Setup

Take a screenshot of the game with color grading disabled1.
Open the screenshot in Photoshop2.
Drag and drop the default grading texture on the canvas3.
(redist/core/textures/grading_default.dds) or (Default Grading Texture)
Place the color strip anywhere in the image4.
Flatten the image to merge all the layers5.
Select “Image > Mode > 16 Bits/Channel” in the top menu6.

Adjustments

https://wiki.frictionalgames.com/_detail/hpl3/engine/grading.jpg?id=hpl3%3Aengine%3Arendering
https://wiki.frictionalgames.com/_detail/hpl3/engine/grading.jpg?id=hpl3%3Aengine%3Arendering
http://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
https://wiki.frictionalgames.com/_media/hpl3/engine/grading_default.zip


Last update: 2011/10/20 15:18 hpl3:engine:rendering https://wiki.frictionalgames.com/hpl3/engine/rendering?rev=1319120298

https://wiki.frictionalgames.com/ Printed on 2019/01/12 19:24

Use any of the options in “Image > Adjustments”
These can be used to change the brightness, saturation, contrast and so on
Any changes you see on the image in Photoshop will carry over to the game

Layers

It is also possible to use the any of the layer blend modes
There are two kinds of layers allowed:

Solid color1.
Dupilcate of the first layer2.

It is possible to duplicate the first layer and make adjustments to it and then blend it
The use of Layer Masks is allowed as long as they are generated from the image and not hand
painted

https://wiki.frictionalgames.com/_detail/hpl3/engine/adjustments.jpg?id=hpl3%3Aengine%3Arendering


2019/01/12 19:24 9/10 Rendering

Frictional Game Wiki - https://wiki.frictionalgames.com/

Saving

Crop the color strip from the canvas, make sure the resulting image is 256×16 px1.
Select “Save As…” and set the format as “D3D/DDS”/“.dds” and save it in the folder2.
“redist/textures/colorgrading/”
In the DDS format settings select “8.8.8 RGB 24 bit | unsigned”, “Volume Texture”, “No MIP3.
maps”

https://wiki.frictionalgames.com/_detail/hpl3/engine/layers.jpg?id=hpl3%3Aengine%3Arendering


Last update: 2011/10/20 15:18 hpl3:engine:rendering https://wiki.frictionalgames.com/hpl3/engine/rendering?rev=1319120298

https://wiki.frictionalgames.com/ Printed on 2019/01/12 19:24

From:
https://wiki.frictionalgames.com/ - Frictional Game Wiki

Permanent link:
https://wiki.frictionalgames.com/hpl3/engine/rendering?rev=1319120298

Last update: 2011/10/20 15:18

https://wiki.frictionalgames.com/_detail/hpl3/engine/dds_format.jpg?id=hpl3%3Aengine%3Arendering
https://wiki.frictionalgames.com/
https://wiki.frictionalgames.com/hpl3/engine/rendering?rev=1319120298

	Rendering
	Environment Particles
	Overview
	Settings

	Lens Flares
	Overview
	Flare Types
	Flare Type Settings
	General Settings
	Glare Settings
	Multi Iris Settings
	Occlusion Settings

	Gamma Correction
	Overview
	Links

	HDR Rendering
	Overview
	Tone Mapping
	Variables

	Exposure Area
	Overview
	Variables

	Color Grading
	Overview
	Creation Guide



