
2017/12/31 08:40 1/5 Dialog Handler

Frictional Game Wiki - https://wiki.frictionalgames.com/

Dialog Handler

Overview

The dialog handler is a used to create dialog that support basic branching behavior. If you want to do
straight forward dialogs that have no branching at all, you might as well just call the Voice Handler
directly. But if there are some branching, even simple like breaking the dialog if the player stop
looking at a character, then the Dialog Handler is what you want.

Basic functioning

The dialog is setup just before it is a about to get played, so there is not special init (other than what
you do for the voice handler). You begin by calling Dialog_Begin() which makes the initial preparations
and allows you to call the other functions. After that it is time to add a branch using
Dialog_AddBranch. You can then use Dialog_AddSubject to add voice subjects to that branch. Once
you add a new branch, then those subjects will belong to the newly added branch. When all branches
and subjects are added, call Dialog_End to run the dialog. Dialog_End will also check which characters
are used in this dialog, and by using Dialog_CharacterIsActive you can check which are currently in
the middle of a dialog.

Example:

Dialog_Begin();
 Dialog_AddBranch("A");
 Dialog_AddSubject("AdamEnter1");
 Dialog_AddSubject("AdamEnter2");
 Dialog_AddBranch("B");
 Dialog_AddSubject("AdamLeave");
Dialog_End();

This will create two branches, “A” and “B”. The first contains “AdamEnter1” and “AdamEnter2”, and
the other “AdamnLeave”. When Dialog_End() is called, “A” will begin playing, starting with
“AdamEnter1” as it was the first added. If you want to start with some other branch, just supply its
name as a parameter for Dialog_End(), like this:

Dialog_End("B")

This would start with branch “B” instead.

Also of interest is that you can make one branch go directly to another by supplying the next dialog
as a second parameter, like this:

Dialog_AddBranch("A", "B")

Now when “A” is done, “B” is started. This might seem a bit pointless at first, but is really useful when
you add branching events (more on that soon).

https://wiki.frictionalgames.com/hpl3/game/voicehandler

Last update: 2012/12/12 13:04 hpl3:game:dialoghandler https://wiki.frictionalgames.com/hpl3/game/dialoghandler?rev=1355317456

https://wiki.frictionalgames.com/ Printed on 2017/12/31 08:40

Branch Events

Overview

These events are needed in order to get the branching behaviors you are after. Events are added
after having added subject and will belong that subject. They can in two types LineEvents and
EndEvent. The first type is checked after each voice line has completed playing. The second is
checked when the entire subject is over.

The existing functions carry this syntax:
Dialog_Add[type]_[condition] (more on conditions in a few lines)
Some examples for functions:

void Dialog_AddLineEvent_Callback(const tString&in asCallbackFunc, const
tString&in asNewBranch)
void Dialog_AddEndEvent_PlayerNotLookingOrOutOfRange(const tString&in
asNewBranch)

Note that if asNewBranch is “”, then the dialog does not jump to a new branch but just stops.

Conditions

The different conditions available are:

OutOfRange
This is true if the player is out of range, as set in Voice_SetSource(..) with the PlayerListeningRange
parameter. This applies to all characters in the dialog with a proper source entity and is only true if all
of them are out of range.

PlayerNotLooking
This is true when the player is no longer looking at the source entity set with Voice_SetSource(..). This
applies to all characters in the dialog with a proper source entity and is only true if all of them are not
looked at.

Variables
The functions for this these are: SetVar, IncVar, VarIsSet, VarEquals, VarGreater and VarLesser.
This is a very simple variable system where each variables carries an integer value. It is very nice to
use to check if some information has been mentioned, by simply doing SetVar(“Info”) and then
deciding on branch depending on if some info is set or not.
Currently variables only support the type EndEvent.
Note that setting variables never results in a branching, so make sure to declare these before any
branching event.

Callback
This is a custom callback that can be used to let what ever code determine if there should be a
branch or not. The syntax is:
bool MyFunc(const tString&in asBranch, const tString&in asBranchSubject, int
alLineIndex, const tString&in asNewBranch)

2017/12/31 08:40 3/5 Dialog Handler

Frictional Game Wiki - https://wiki.frictionalgames.com/

asNewBranch is very handy when you do not want too many callbacks function to provide similar
functionality. For example if the branch should be determined by the name of a cat, then you can do a
function like this:

bool MyFunc(const tString&in asBranch, const tString&in asBranchSubject, int
alLineIndex, const tString&in asNewBranch)
{
 return asNewBranch == msSomeSavedVariableOfCatName;
}

The declared events can then look like this:

Dialog_AddLineEvent_Callback("MyFunc", "Snoopy");
Dialog_AddLineEvent_Callback("MyFunc", "Shaggy");

Example

Now for some full test source. Lets say that we have a dialog that should stop playing whenever the
player stops looking at the character, then we do like this:

Dialog_Begin();
 Dialog_AddBranch("A");
 Dialog_AddSubject("AdamEnter1-2");
 Dialog_AddEndEvent_PlayerNotLooking("B");
 Dialog_AddBranch("B");
 Dialog_AddSubject("AdamLeave");
Dialog_End();

Response selection

Overview

The dialog system allow the player to choose different option that will determine how the outcome of
a dialog. After a subject has finished playing the DialogHandler will send a message to put in the
game in “Response Mode” (more information on this at the end of this section) and the player will
have to make a choice before the dialog continues. Each of the choices are called ResponseOptions
and it is possible to set up conditions for if they should be present nor not, as well as declare events
that happen if the ResponseOption is chosen.

ResponseOptions are added after having added a subject and uses the function
Dialog_AddResponseOption(ebtry). It looks like this:

Dialog_AddBranchAndSubject("A");
 Dialog_AddResponseOption("TextEntry1","NewBranch1");
 Dialog_AddResponseOption("TextEntry2","NewBranch2");
 ...

Last update: 2012/12/12 13:04 hpl3:game:dialoghandler https://wiki.frictionalgames.com/hpl3/game/dialoghandler?rev=1355317456

https://wiki.frictionalgames.com/ Printed on 2017/12/31 08:40

This code will give the player two choices and jump to either “NewBranch1” or “NewBranch2”
depending on their choice. The first argument for each option, “TextEntry1” and “TextEntry2”, is an
entry in the lang file. The category will always be the name of the level (the file name without
extension). The second argument is the branch to jump to if the option is chosen. If this is “”, the
dialog is ended.

In order to make sure that the code looks good a certain syntax for the Entry should be used and is as
follows:

Response_[Scene]_[Subject]_[Text]
Scene: The scene as defined in the voice handler.
Subject: The name of the subject that the response selection follows.
Text: Something that summarizes actual text for this choice.
Example:

Dialog_AddResponseOption("Response_FredAndDanny_AskIfWantHug_YesPlease",
"");

Note: In the examples here I am not using correct syntax, but that is only to keep the text compact!

ResponesOptions and BranchEvents

As noted above, BranchEvents can also be added after a subject, and if there are both
ResponseOptions and BranchEvents after a subject, the BranchEvents are checked first and then
the ResponseOptions are handled. So for instance:

Dialog_AddBranchAndSubject("A");
 Dialog_AddResponseOption("TextEntry1","NewBranch1");
 Dialog_AddResponseOption("TextEntry2","NewBranch2");
 Dialog_AddEndEvent_VarIsSet("Var", "NewBranch3")
...

In the code above, after having played Subject “A”, the dialog will jump to “NewBranch3” if the
variable “Var” has been set. It is only if the the VarIsSet-test fails that the Response selection is
started.

Variables

It is also possible to check and set internal dialog variables at each ResponseOption. These are the
same variables that are checked and set by the BranchEvents. The functions for doing this are:
Dialog_AddResponseCondition_*
This makes check and see if a ResponseOption should be used. * is VarIsSet, VarNotSet, VarEqual,
VarLesser or VarGreater.
Dialog_AddResponseEvent_*:
This sets a variable if the ResponseOption is chosen. * is SetVar or IncVar.

These shall be set after a response option has been added. For example: subject, the BranchEvents

2017/12/31 08:40 5/5 Dialog Handler

Frictional Game Wiki - https://wiki.frictionalgames.com/

are checked first and then the ResponseOptions are handled. So for instance:

Dialog_AddResponseOption("TextEntry1","NewBranch1");
 Dialog_AddResponseCondition_VarEqual("BodyCount", 3);
 Dialog_AddResponseEvent_SetVar("Foo");

This will add the response “TextEntry1” if BodyCount has a value of 3. If this option is chosen, then
the variable “Foo” is set.

Tip::
If you have Response Selection that pops up many times (for instance some topic selection) then an
easy way to make an option only appear once is to use Dialog_AddResponse_OneTimeCheck(…). This
adds a condition to check if a var is not set, and if chosen sets that variable.

Time limit and Default Options

It is possible to set a time limit to a Response Selection by using Dialog_SetResponseTimeLimit(…),
where 0=means unlimited amount. If time runs out the default ResponseOption will be chosen. This is
simple an option with an an empty entry (named “” that is). This option must always be declared after
all other ResponseOptions have been declared. The default option will never be displayed.

If a Response selection only has a single visible option (meaning no default options counted), then
that option will automatically be selected. If there is only a default option then that will be selected
automatically as well.

Selection implementation

The Dialog Handler does not implement any GUI or input for the actual selection, instead this is up to
the user implementation. When a Response Selection is encountered, the Dialog handler will call
_Global_StartResponseSelection in the current player state. If none is find, the selection is
skipped. If found then it will send the following arguments:

0 float with time limit.
1 The number of visible options.
2,3,.. The text entries for each option as a String

When the selection is done, the implementation must call ReturnResponseSelectChoice in
cLuxDialogHandler with the selected option. If time has run out, then -1 shall be sent as argument.

From:
https://wiki.frictionalgames.com/ - Frictional Game Wiki

Permanent link:
https://wiki.frictionalgames.com/hpl3/game/dialoghandler?rev=1355317456

Last update: 2012/12/12 13:04

https://wiki.frictionalgames.com/
https://wiki.frictionalgames.com/hpl3/game/dialoghandler?rev=1355317456

	Dialog Handler
	Overview
	Basic functioning
	Branch Events
	Overview
	Conditions
	Example

	Response selection
	Overview
	ResponesOptions and BranchEvents
	Variables
	Time limit and Default Options
	Selection implementation

