
2017/09/07 03:53 1/4 Entity Components

Frictional Game Wiki - https://wiki.frictionalgames.com/

Entity Components

Overview

What follows here is an overview of all the different entity components that are present. Entity
components are used to extend the functionality of any derived iLuxEntity class.

To add a module simply call the creation function in the SetupAfterLoad() call in the entity script file.
It is often required to save a handle to the returned class as well.

CharMover

Creation function: cLuxCharMover@ cLux_CreateEntityModule_CharMover(iLuxEntity
@apEntity, iCharacterBody @apCharBody)

General

This is used to more easily move around a character body. It controls movement forward, rotation and
very simple avoidance behaviors.

PathFinder

Creation function: cLuxPathFinder@ cLux_CreateEntityModule_PathFinder(iLuxEntity
@apEntity)

General

This is used to add pathfinding capabilities. It relies on Path nodes being placed in the map and
usually works together with CharMover (but this is not needed).

StateMachine

Creation function: cLuxPathFinder@
cLux_CreateEntityModule_StateMachine(iLuxEntity @apEntity)

General

This adds a state machine to the entity. It can be used for pretty much every thing but is mainly used



Last
update:
2012/11/16
13:19

hpl3:game:scripting:entity_components https://wiki.frictionalgames.com/hpl3/game/scripting/entity_components?rev=1353071968

https://wiki.frictionalgames.com/ Printed on 2017/09/07 03:53

for AI purposes.

To use the statemachine, you need to create states right after having created the module. It is very
important that all states are always created in the same order for all entities using the same script file
(basically meaning you should not dynamically create states during the update loop or similar). For
instance:

@mpStateMachine = cLux_CreateEntityModule_StateMachine(mBaseObj);
mpStateMachine.AddState("Idle", eState_Idle);
mpStateMachine.AddState("Move", eState_Move);
mpStateMachine.AddState("Stop", eState_Stop);

Every state has a couple of actions (methods really) that called in response to different events. These
are:

Enter()
Called when the state is started.
Leave()
Called when the state is over. This is called before Enter of the new state!
Update(float afTimeStep)
Called every update.
SubStateOver(int alSubStateId)
Called when a sub state is over. More on substates below.
Message(int alMessageId)
This is any entity message that is intercepted. Can also be a custom message.
TimerUp(int alTimerId)
When a timer is over.

For each state, each of these functions get a name based on the syntax like this:
void State_[StateName]_[Action]
For instance the Enter() action in the state “Idle” is:

void State_Idle_Enter()

Note that you only have to define the actions that you want, so for instance a Stop state might only
be something like:

void State_Stop_Enter() {
 //Stop the character
}
void State_Stop_Leave() {
 //Make the character move again
}

And skip Update, etc. (This is actually the best practice too!)



2017/09/07 03:53 3/4 Entity Components

Frictional Game Wiki - https://wiki.frictionalgames.com/

Sub State

A sub state is just like a state that runs along side the normal state. What makes it different is that
they only last as long as the state that started it. Also sub states cannot change the normal state,
only what the next substate will be. It can be sort of seen a smaller state machine inside a state. The
sub states are created just like normal states but using the AddSubState(tString, int) method
instead. Also note that substates can be shared between all of the states. They only belong to the a
state in the sense that a sub state started in state X will only run while state X is active.

The function syntax for sub states is:
void SubState_[StateName]_[Action] For example:

void SubState_ThrowObject_Enter()

When a sub state is over, the state that started it has the action SubStateOver(int
alSubStateId) called, where alSubStateId contains the id of the sub state.

Sub state as all the same actions as the normal state except for SubStateOver(int alSubStateId)

Another important feature of sub states is that there not has to be one set. So it is okay to do:

 mpStateMachine.ChangeSubState(-1)

which set no state at all as sub state. This is actually the default setting when ever a new normal
state is started.

Timers

Timers are used to check if a certain amount of time has passed. They are only valid for the state that
started it, so if a timer is active when state changes, then it becomes removed. Also, state and sub
state do not share timers. So if sub state “ThrowObject” starts a timer, then TimerUp will only be
called in the sub state, and not the normal state. Timers are started with StartTimer(int alId,
float afTime) in the state machine and can be stopped with StopTimer(int alId).

SoundListener

Creation function: cLuxSoundListener @ cLux_CreateEntityModule_SoundListener
(iLuxEntity @apEntity)

General

This simply makes the entity into a sound listener and it will now receive the event message
eLuxEntityMessage_SoundHeard whenever a sound of a specific type (specfied in
“sounds/ai_reaction_sounds.dat”).



Last
update:
2012/11/16
13:19

hpl3:game:scripting:entity_components https://wiki.frictionalgames.com/hpl3/game/scripting/entity_components?rev=1353071968

https://wiki.frictionalgames.com/ Printed on 2017/09/07 03:53

HeadTracker

Creation function: cLuxHeadTracker @
cLux_CreateEntityModule_HeadTracker(iLuxEntity @apEntity)

General

This will make the entitie's head follow a certain target. What is the head is set b setting up the bones
that makes up the neck and how much influence each should have. This is done using Setup(…) or by
using the variables in the .ent file (use LoadFromVariables from the script to load the variables).

ForceEmitter

Creation function: cLuxForceEmitter @
cLux_CreateEntityModule_ForceEmitter(iLuxEntity @apEntity)

General

This will give the entity a force field (cForceField) which makes certain things in the game world (such
as undergrowth) animate and react to its presence . If MaxForceSpeed is higher than 0 it will also vary
in strength depending on the speed of the MainBody (or character if set).

From:
https://wiki.frictionalgames.com/ - Frictional Game Wiki

Permanent link:
https://wiki.frictionalgames.com/hpl3/game/scripting/entity_components?rev=1353071968

Last update: 2012/11/16 13:19

https://wiki.frictionalgames.com/
https://wiki.frictionalgames.com/hpl3/game/scripting/entity_components?rev=1353071968

	Entity Components
	Overview
	CharMover
	General

	PathFinder
	General

	StateMachine
	General
	Sub State
	Timers

	SoundListener
	General

	HeadTracker
	General

	ForceEmitter
	General



